MODULE 4: POLYNOMIALS

"WE ARE ALL SELF MADE, BUT ONLY THE SUCCESSFUL ADMIT IT."

4.4 POLYNOMIALS	
Polynomial Type	Example
Monomial:	
Binomial:	
Trinomial:	
Polynomial:	
Terms are separated by _	and
Polynomial Degree: determ	nined by the highest
Leading Coefficient: coeffi	cient with highest
Given the polynomial: a ⁶ +	
	als de area
	ch term
•	erm:
	ynomial:
Find the leading coetticien	t:
Evaluate:	and
Always plug in with	
Ev Evaluato 2vv - v ³	when $y = 3$ and $y = 2$

4.5 ADDING AND SUBTRACTING POLYNOMIALS

Always_____ anything in front of the parentheses first.

Drop the parentheses if it is a ______. No change occurs.

If it is a _____, then distribute the negative

sign and change the signs of each term within the parentheses.

When combining like terms, remember like terms have the same

_____ and the same _____.

Note: Use symbols to organize like terms into separate groups.

Ex. Simplify:
$$5x^2 - 3x + 4x^2 - 7x + 6$$

Ex. Simplify:
$$(x^2 - 5x - 7) + (3x^2 + 4x - 5)$$

Ex. Simplify:
$$(-4x + 6) - (2x^2 - 6x^2 - 3)$$

Ex. Simplify:
$$(9x^2 - x + 5) - (4x^2 + 3x - 6)$$

4.6 MULTIPLYING POLYNOMIALS

Multiplying polynomials: Use the_____ property.

Ex. Simplify:
$$-3x^2(-x^4 + 3x^2 - 1)$$

Ex. Simplify:
$$-5x^3y (3x^2y^4 - 7x^2 + 4y^3 - 2)$$

If multiplying 2 expressions (side by side) use the acronym: FOIL

Ex. Simplify:
$$(3x + 2)(5x - 9)$$

Ex. Simplify:
$$(x -5)(-3x - 8)$$

Ex. Simplify:
$$(x - 7)(x + 9)$$

Multiplication is ______. (order doesn't matter)

Ex. Simplify:
$$2x (3x + 5)(x - 3)$$

Ex. Simplify:
$$-x (8x + 6)(7x - 9)$$

If multiplying a perfect square, write the expression _____.

Note: Do not ever distribute the exponent into an expression!

Ex. Simplify:
$$(3x)^2$$

Note: This a monomial squared (no +/-)

Ex. Simplify:
$$(3x - 7)^2$$

Note: This a binomial squared (expression with +/-); must FOIL

Ex. Simplify:
$$(x + 4)^2$$

Ex. Simplify:
$$(2x + \frac{1}{4})^2$$

_ Pairs: Expressions that look to be

the same (same terms), but with opposite signs in the middle.

$$(5x - 6)(5x + 6)$$

Note: When you FOIL conjugate pairs, the 2 middle terms cancel

If multiplying conjugate pairs you can skip the outer and inner portion of F.O.I.L., only multiply the first and the last terms.

$$(9x - 8) (9x + 8)$$

Ex. Simplify:
$$(x^2 - 7)(x^2 + 7)$$

4.7 DIVISION OF POLYNOMIALS

Note: Properties of exponents for division tells me to

_ exponents.

Ex. Simplify:
$$\frac{30x^4y^3}{15x^2y^7}$$

Ex. Simplify:
$$\frac{6x^5y^2z^2}{54x^5yz^{10}}$$

When dividing with an expression on the top, and a monomial on the bottom, first ______ your fraction, then use properties of exponents for division

$$Ex. \qquad \frac{10x^2 - 8x + 4}{2}$$

Ex.
$$\frac{90x^3 - 72x^2 + 54x}{-9x}$$

Ex.
$$\frac{20x^3y^3 - 75x^4y^5 + 35x^6y^8}{5x^2y^3}$$

Ex.
$$\frac{6a^{12}b^7 - 3a^7b^{10} + 15a^5b^3}{3a^5b^3}$$

Homework Checklist

- ☐ Section 4.4 Polynomials
- ☐ Section 4.5 Polynomials: Adding and Subtracting
- ☐ Section 4.6 & 4.7 Polynomials: Multiplying/Dividing